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Abstract. Thesl(2) minimal theories are classified by a Lie algebra gair G) whereG is of

A-D-E type. For these theories on a cylinder we propose a complete set of conformal boundary
conditions labelled by the nodes of the tensor product gragh G. The cylinder partition
functions are given by fusion rules arising from the graph fusion algebra®fG. We further
conjecture that, for each conformal boundary condition, an integrable boundary condition exists
as a solution of the boundary Yang—Baxter equation for the associated lattice model. The theory
is illustrated using théAy4, D4) or three-state Potts model.

1. Introduction

The study of conformal boundary conditions [1] continues to be an active area of research.
The many areas of application include open string theory and conformal field theory,
boundary critical behaviour in statistical mechanics, massive and massless boundary flows
in 2D field theories as well as quantum impurities and the Kondo problem in condensed
matter physics.

Conformal invariance can only exist in the presence of a boundary if the boundary
and boundary conditions are invariant under local conformal transformations. This places
severe restrictions on the boundary conditions in order for them to be conformal. The
problem of a general classification of conformal boundary conditions has recently seen a
revival of interest. For theories with a diagonal torus partition function it is known that
there is a conformal boundary condition associated to each operator appearing in the theory.
Moreover, the fusion rules of these boundary operators are just given by the bulk fusion
algebra and thus by the Verlinde formula [2]. In contrast, for non-diagonal theories, the
fusion rules are not known in general and it is not even known what constitutes a complete set
of conformal boundary conditions. Indeed, these questions have only been resolved [3, 4]
very recently for the simplest non-diagonal theory, namely, the critical three-state Potts
model. In this letter we propose a complete set of conformal boundary conditions, fusion
rules and cylinder partition functions for thé(2) minimal models.

Thes!(2) minimal models in the bulk are classified [5] by a pair of simply laced Dynkin
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diagrams(A, G) of type

(Ap-1, Ag1)
(Ap-1, Dg12)/2) g even

(A, G) = (Ay_1, Ep) g =12 (1)
(Ap-1, E7) g=18
(Ap-1, Es) g =30

Hereh andg are the coprime Coxeter numbers Afand G and the central charges are

N Ut Vi @)

hg

We conjecture that for these theories a complete set of conformal boundary condaioths
the corresponding boundary operatgrsare labelled by € (A, G):

@i i=(ra)€(A0) 3

wherer, a are nodes on the Dynkin diagram df and G respectively. We will usez
to denote the Dynkin diagram and the adjacency matrix of this graph. We, uge-, to
denote nodes ofi;_1; s, s1, 52 for the nodes ofA,_1; a, a1, ap, b for the nodes ofG and
i, j to label nodes in the paiiA, G).

We now introduce fused adjacency matrices (intertwiners) and graph fusion matrices.
The fused adjacency matric&s with s = 1, ..., g — 1 are defined recursively by thé(2)
fusion algebra

Vi=VoVi1 =V, (4)

subject to the initial condition$; = I and Vo, = G. The matricesV, are symmetric and
mutually commuting with entries given by a Verlinde-type formula

Ssm %
Vsab = (Vs)ab = Z = “pam lI”bm (5)

meExp(G) Sm

where the columns of the unitary matricEsand & are the eigenvectors of the adjacency
matricesA,_; and G, respectively, and the sum is over the Coxeter exponents wfith
multiplicities. We assume the graph has a distinguished endpoint node labelieg- 1
such that¥y,, > 0 for all m. This is at least the case for A-D-E graphs. In this notation
we define the fundamental intertwiner ﬁs‘ = V1.

The graph fusion matrice&, with « € G were introduced by Pasquier [6]. These are
defined by the Verlinde-type formula [7]

\I[am \Ilbm \Il:m

Nap® = (Na)© = Z _— a,b,ceqG. (6)
meExXp(G) R
These matrices satisfy the matrix recursion relation
Gﬁa = Z GabNb (7)

beG

and initial conditionsV; = I and N, = G where 2 denotes the unique node adjacent to 1.
The numbersV,,¢ are the structure constants of the graph fusion algebra
NoNp =Y Ny N. ®)
ceG
All the entries of the fused adjacency matridésare non-negative integers. For a proper
choice of the eigenvectors and of the node 1, the entries of the graph fusion matyices
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are also integers, and with the exceptioni®f, .1 and E7, they are non-negative. A key
identity relating the fused adjacency matrices and graph fusion matrices is

vaa = Z Vsaler (9)

beG

2. Fusion rules

Let iy, i» andiz € (A, G) and consider the tensor product grapt® G with distinguished
nodei = 1 given byi = (r,a) = (1,1). Then we conjecture that the fusion rules for the
boundary operators (3) are

P X P= > Nii® @i (10)

ize(A,G)
where\;, are just the graph fusion matrices associated with the tensor product 4@6h
M1i2i3 = 'A/‘(rlqal)(rzﬂz) (r3:09) = Nr11‘2r3Na1a2a3 (11)

where N,, are the graph fusion matrices for,_;. Let ¢, be the primary chiral fields
with respect to the Virasoro algebra. Then the operafpes ¢, , are related ta, ; by the
intertwining relation

Z@r,b(‘}T‘})ba = Z gor,s‘}sa (12)

beG S€EA; 1

whereV is the fundamental adjacency matrix intertwiner defined in section 1. By equality
in (12) we mean that the operators on either side satisfy the same algebra under fusion.
We define a conjugation operat@i{a) = a* to be the identity except foD,, graphs
where the eigenvectorg,,, are complex and conjugation corresponds to ZheDynkin
diagram automorphism. It then follows that,.,C = N> We conjecture that the
coefficients of the cylinder partition functiori, ;, of the s/(2) minimal theories are given

by the fusion produc.tbj1 X ¢;,, that is
Zii@) = > Nigi,* i (@) (13)

i3€(A,G)

1li2

More explicitly,

Z(ry.ap)|(r2.a (@) = Z '/\/(H,df)(rz,az)(rg’ag) Xra.as(@) (14)
(r3,a3)€(Ay-1,G)
= Z Xrs (@D N, ? Vi, (15)

(r,s)€(Ap-1,A4-1)

where, in terms of Virasoro characters,

Fra@ = Y xes(@Vi“. (16)
s€EAg 1

The equivalence of the two forms (14) and (15) of the cylinder partition functions follows
from the identity (9) witha = 1. The result (15) is not entirely new but generalizes and
encompasses several previous results [8, 1, 9]. Note that the makjcesV, form a
representation of the fusion algebra of the minimal model. Indeed, a proper derivation [10]
of the above results uses boundary and Ishibashi states and proceeds by showing that Cardy’s
equation is equivalent to the statement that these coefficient matrices form a representation
of the fusion algebra. The problem is thus reduced to finding non-negative integer matrix
representations of this algebra.
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Figure 1. Folding and orbifold duality relating the tensor product grdpk® D4 to A4 ® D4 and
Aa ® As. The conformal weights of the eight conformal boundary conditions of the three-state
Potts model appear in the boxes of the® D4 theory.

3. Critical three-state Potts

As an example we consider th®el1(A4, D4) or critical three-state Potts model. To avoid
redundancy, we consider the fold€f,, D,) model as shown graphically in figure 1. The
tensor product fusion graph ® D, also arose in the work of @kenhauer and Evans [11].

The complete list [3, 4] of conformal boundary conditions, conjugate fig¢ldsnd
associated charactefsis

A = 1LD=4\D P11 = 1 X0+ X3
B = (1,3 =473 P13 = ¥ X2/3
C = LH=49 gra = Yl X273
BC = 2,1)=@G)D Po1 = € X2/5 + X7/5
AC = (2,3 =G93 $23 = O X1/15
AB = (2,9=@G9 Posa = o X1/15
F = 1,2=42 P12 = 1 X1/8 + X13/8
N = (2,2=@3,2 P22 = & X1/40 + X21/40.
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The fused adjacency matrices 6f= D, are

1 000 0 1 0O
0100 1011
V1=V5=(o 010 2=Va=19 1 0 0
0 0 01 01 00
0 011 (17)
0 200
==11 0 0 1|
1 010
The unitary matrix which diagonalizeB, is
= £ 1 1
V2 2
1 3 _ /3
=7 \/1; 12 ° 02 (18)
3 ?ﬁ ? 6()2 w
N R A

wherew = exp(2ri/3) is a primitive cube root of unity. The graph fusion matricesinf
are

1 0 0 O 01 0O
sefsiog) wofpod

SEF R
wef220f) woforoe

1 0 0 O 0 01 0

The graph fusion matrices @ are

1 (1 0 .2 (01
Nl_N_<0 1 Np=N*=(] 1) (20)
The intertwinerV and conjugatiorC are
1 000 1000
A 01 00 0100
V=0 0 1 1 C= (21)
0 001
01 00 00 1 0
1 000

The conjugation operatdf acts on the left to raise and lower indices in the fusion matrices
N®=CN,.
The complete fusion rules of boundary fields are given as follows:

€ n £ v o vyt ol

€ en €& ey e eyl  eof

1

€

P L RN LN e

€ o o ~
Vove Um wE U o gu gol | =N ® 8,
o o€ on o& oY o oyt oot

vt yle win yie yly yio yi? ylof

of ote ofn ofe oly ofoc ofyf ot?
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In total, we find 12 distinct cylinder partition functions [1, 3]

(@) = x1.1(q@) + x15(q)

= X11

A(q)

X2.1
)21,2

Bc(q)

F(q)

~(g)
ZaBiaB(q)
Zapac(q)
Zagin(q)
Zrr(q)
Zrn(q)
Znin(g)

(@) = x35(q) + x3.1(q)

(@) = xa2(q) + xa.4(q)
(@) = x2.2(q) + x2.4(q)

ZaBir(q)
(@) = x1.1(q) + x35(q) + x3.1(9) + x15(q)

(@) = x33(q) + x1.3(q)

X222

(@) + X2.1

X1.1

X1.4(q) + X2:3
(@) + X
(@) +

(@) = x2,2(q) + x2,4(q) + x42(q) + xa.4(q)

X1.2
A1.3

X2,2

X11

(@) = x1,1(q@) + x15(q) + 2x1,3(q)
(@) = x35(q) + x31(q) + 2x33(q)

X14

(@) +

(q) + X23(q) + X2.4

X211

X1.1(q) + X2.1(q) + X1,3(q) + X1.4(q) + X2.3(q@) + X2.4(q)
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= x11(q) + x35(q) + x3.1(q) + x1.5(q) + 2x33(q) + 2x1.3(q).

Here we restrict to Virasoro characters with- s even. The symmetry

Ziry.an)l 202 () = Z(rp.a0)\(r1.a1) (@) (22)

follows because the characters do not distinguish between agfieft its conjugate’.

4. Integrable boundary weights

We conjecture that all the conformal boundary conditionssf¢2) models can be obtained

in the continuum scaling limit of suitably specialized integrable boundary conditions for the
associated critical lattice models [12]. For th&,_1, A,) theories the integrable boundary
weights have been obtained [13], as solutions to the boundary Yang—Baxter equation, by a
fusion construction. This method generalizes [13] to the A-D-E models using the appropriate
fusion process [14]. The solutions to the boundary Yang—Baxter equation are naturally
labelled by a pair(r, a) and are constructed by starting atand fusingr — 1 times. For

(A4, Dyg), the non-zero triangular boundary weights attached to the edges of double-row
transfer matrices are given explicitly by

A,B,C=1,a): 2 =1 a=1,34
a
2 2 12

F =(1,2:1 =3 = 4< =
2 2 i2
2 2 2

BC =2D:s =4 = p1(u), 1 = p1(—u)
2 2 2
2 2 2

AC =23 :1 =4 = p1(u), 3 = p1(—u)
2 2 2
2 2 2

AB =(2,4:1 =3 = p1(u), 4 = p1(—u)
2 2 2

b
2< :pz(u) a;éb, a,b=1,3,4

2< = p3(u) a=134
a

with u the spectral parametex,= /6, & arbitrary and

N =(2,2):

e |
pr(u) = SEEQIMEED pp(u) = o2

,Og(u) — Zsin(ufé)sin(u+é)+ssiin2n(;)h—2)ﬁs)sin(u72A+$)'

The new boundary condition [3} is found to be antiferromagnetic in nature. The value
of u should be set to its isotropic value= A/2 and& chosen appropriately to obtain the
conformal boundary conditions.
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5. Conclusion

In conclusion we have proposed a set of conjectures that extend the theory of conformal
boundaries in a consistent way. The structure of the partition functions is dictated by a
new fusion algebra. We comment that the conjecture (15) is independent of the choice of
endpoint node and eigenvectors and is meaningfulfgr, ; and E7, even though a proper
understanding of the fusion matrices in (14) is missing. We expect the extension to higher
rank [15] to be straightforward. A much more comprehensive version of this work will be
published elsewhere.

REB and PAP are supported by the Australian Research Council. J-BZ acknowledges partial
support of the EU Training and Mobility of Researchers Program (contract FMRX-CT96-
0012).
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